
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Arrays and pointers recap (1)

0

1

2

3 10

4 20

5 30

6

7

8

9

MemoryAddress

char MyArray[3] = {10,20,30};

MyArray

Arrays and pointers recap (2)

0

1

2

3 10

4 20

5 30

6

7

8

9

MemoryAddress

char MyArray[3] = {10,20,30};
Char *pArray;

MyArray

pArray

Arrays and pointers recap (3)

0

1

2

3 10

4 20

5 30

6

7 3

8

9

MemoryAddress

char MyArray[3] = {10,20,30};
Char *pArray;
pArray = MyArray

MyArray

pArray

Arrays and pointers recap (4)

0

1

2

3 10

4 50

5 30

6

7 3

8

9

MemoryAddress

char MyArray[3] = {10,20,30};
Char *pArray;
pArray = MyArray
pArray[1] = 50;

MyArray

pArray

Arrays and pointers recap (5)

0

1

2

3 10

4 50

5 30

6

7 4

8

9

MemoryAddress

char MyArray[3] = {10,20,30};
Char *pArray;
pArray = MyArray
pArray[1] = 50;
pArray++;

MyArray

pArray

Arrays and pointers recap (6)

0

1

2

3 10

4 60

5 30

6

7 4

8

9

Memor

y

Addres

s

char MyArray[3] = {10,20,30};
Char *pArray;
pArray = MyArray
pArray[1] = 50;
pArray++;
*Parray = 60;

MyArray

pArray

Introduction

Today we will cover:
▪Chapter 18 – Using files

▪Project introduction

▪Software engineering best practice (part 1)

Start recording!!

Using Files

Chapter 18

Files

Data stored in a program is temporary

To keep a long-term copy of data it is stored in a file on an external

device, eg hard drive, solid state drive, flash drive

Files

Data stored in a program is temporary

To keep a long-term copy of data it is stored in a file on an external

device, eg hard drive, solid state drive, flash drive

0 1 2 3 4 5 6 7 8 9 … n-1 End of file marker

A C program views a file as a sequential stream of bytes, terminated

by an ‘end of file’ marker

Depending on the file type these may be accessed sequentially or randomly

Text and Binary Files

Text files:

✓ Can be viewed in an editor

✓ Can be read by different machines

x Tend to be bulky

x Must be read in sequence

Binary files:

✓ Much Smaller for the same amount of data

✓ Can be randomly accessed

x Can’t be viewed in an editor

x Byte ordering can be a problem

Streams

On opening a file, a stream is associated with it.

When a program opens 3 streams are automatically created:

• standard input which receives data from the keyboard

• standard output which displays output to the screen

• standard error which displays error messages on the screen

Streams allow communication between a file and the program.

When a data file is opened a stream is created which allows the program to

read and write data to and from the file.

Using Text Files

First, the file must be opened

Once opened, use functions such as
fscanf and fprintf

In the same way we have been using
scanf and printf

When finished, it is necessary to close the file
Not doing so can result in the loss of information!

Opening Files – fopen (1)

FILE *fPtr;

fPtr = fopen(“fred.txt”, “w”);

Opening Files – fopen (2)

FILE *fPtr;

fPtr = fopen(“fred.txt”, “w”);

First create a variable of type FILE *
This returns a pointer to a FILE structure which is defined in stdio.h

Opening Files – fopen (3)

FILE *fPtr;

fPtr = fopen(“fred.txt”, “w”);

First create a variable of type FILE *
This returns a pointer to a FILE structure which is defined in stdio.h

Then call the fopen function to open

the file, thus creating the stream for

communication with the file

Parameters are the filename and a ‘mode’

Opening Files – fopen (4)

FILE *fPtr;

fPtr = fopen(“fred.txt”, “w”);

First create a variable of type FILE *
This returns a pointer to a FILE structure which is defined in stdio.h

Then call the fopen function to open

the file, thus creating the stream for

communication with the file

The function returns a

pointer to the newly opened

stream if successful,

otherwise it returns NULL

Parameters are the filename and a ‘mode’

fopen: Text File Examples

Create a new file

fNew = fopen("fred.dat", "w");

Open a file for reading

fNew = fopen("fred.dat ", "r");

Open a file for appending

fNew = fopen("fred.dat", "a");

Note: As with memory allocation, we MUST check the file was opened OK!

Note: We use " " here for the ‘mode’
as, though for text files this
parameters is (generally) a single
character, there are occasions (e.g.
binary files) where is it a string

Reading and Writing Data To and From Text Files

Functions fscanf and fprintf are used:

Nearly the same as fscanf and fprintf but must pass the
file handle created when the file was opened:

fOutput = fopen("fred.txt", "w");

fprintf(fOutput, “%d\n”, i);

fInput = fopen("fred.txt", “r");

fscanf(fInput, “%d”, &d);

Closing Files - fclose

Closes a previously open file

Prototype is in stdio.h

fclose(fPtr);

Returns:

▪ 0 : if the file was closed OK

▪ EOF : if an error was detected

Always call fclose as soon as possible when it is no longer needed

• This frees up system resources and leaves the file available to be opened by
other programs

• If not explicitly called the operating system should close the file automatically
when the program exits (but this cannot be guaranteed)

Text File Example

We will

• Open (& create) a new file,

• Check it was opened OK

• Write the values 1 to 10 to it

• Close the file

Then

• Open it back up

• Check it was opened OK

• Read and display the values

• Close the file

C18\text_file_example.c

Reading to the end of a file

There will be occasions where we do not know the size of a file so this poses a
problem:

• How much data is in the file ?

We could be organized
• Specifying this at the start of file
• This is referred to as a Header
• Note: A header need not be a single value, it can be a complete descriptor of the

data contained in the file

If we do not have a header
• We read to the end of file

• Making use of the function (actually macro) ‘feof’
or
• Making use of the return value of functions used for reading data: fscanf, fread,

fgetc etc.

File read return values

Return values:

fscanf – Returns the number of items of the argument list successfully
filled. Returns EOF (end of file) if this is reached while reading.

fread – Returns the number of full items successfully read (may be
fewer than the number specified if an error occurs). Returns EOF (end
of file) if this is reached while reading.

 fgetc – Returns the character that is read as an integer. Returns EOF if
there is an error or the end of file is reached

◦

Text File Example - modified

Time for an example…

We will
▪ Open (& create) a new file,

▪ Check it was opened OK

▪ Write the values 1 to 10 to it

▪ Close the file

Then
▪ Open it back up

▪ Check it was opened OK

▪ Read and display the values using the return value from fscanf to read to the end

▪ Close the file

LC18/ EndOfFileScanf

Using the feof macro

Macro that checks for the End Of File
▪ Returns non-zero if end of file reached
▪ Returns zero otherwise
▪ Works for text and binary files

Prototype is in stdio.h
int feof (FILE *handle)

Be careful – Checks the current state of the file handle

We will look at the same example but using feof to find the end of file

LC18/ EndOfFile

Binary Files

A binary file is one where the data written to the file is

the bytes used for storage, rather than the ‘text’ format

We are, in effect, copying areas of memory to and

from the file

The Advantages

The files use less space:

For an integer, value 32768:

• Binary file – 4 bytes

• Text file – 5 characters (10 bytes)

For a float, value 78935670394587289473659.893475629836745:

• Binary file – 8 bytes

• Text file – 39 characters (78 bytes)

More Advantages

We can write whole arrays/structures in one go

• This is much faster than having to convert each value to its

text format and output it

Also, each item is always the same size

• We will make use of this property later

We cannot directly read/edit/print binary files

We can hit a problem with byte ordering (and storage size) when going
across platform

▪ e.g. SUN to/from PC

Opening a Binary File

Basically the same as a text file, We just add an extra bit to the mode to indicate it is
a binary file, e.g.

Create a new file

 fNew = fopen("fred.dat", "wb");

Open a file for reading

 fNew = fopen("fred.dat", "rb");

Open a file for appending

 fNew = fopen("fred.dat", "ab");

Note: As with memory allocation, we MUST check the file was opened OK!

Using the File

There are a few ‘common’ functions we use for reading/writing to binary files

▪ fread

▪ fwrite

▪ fgetc

▪ Fput

There are others but we do not need worry about these - see the help system for
more info!

When we have finished, we (as with text file) close the file using

▪ fclose

fgetc, fputc

These work the same as getchar and putchar, allowing us to

read or write single characters to a file - we just include a pointer

to the file

int fgetc(FILE *stream);
int fputc(int c, FILE *stream);

The ‘new’ commands: fread

fread

Reads (copies) binary data from a file directly into memory, starting at
the memory location we specify

#include <stdio.h>
size_t fread (void *ptr, size_t s, size_t n, FILE *stream);

Size of

each item
How many

to read
File

pointer

Base address

of our variable

or array

The ‘new’ commands: fwrite

fwrite

Writes (copies) a block of memory, starting at the memory location we specify, to a

binary file

#include <stdio.h>
size_t write (void *ptr, size_t s, size_t n, FILE *stream);

Size of

each item

How many

to read

File

pointer

Base address

of our variable

or array

Time for an example

We will

▪Define an array of 10 elements

▪Populate the array

▪Write it out to file (in one go!)

▪Read it in again

C18\binary_file_example.c

Random Access in Binary Files

50 bytes 50 bytes 50 bytes 50 bytes 50 bytes

0 200100 15050

Byte offsets

Records in binary files are typically all the same (known) size. This

makes is easy to calculate the location of a specific entry, making it

possible to move straight to that entry to read or write data.

We can ‘jump’ around the file using the fseek function

fseek

int fseek(FILE *stream, long offset, int whence);

File

pointer

How

far to

move

Where

to move

from

The fseek function is defined in stdio.h:

If whence is ‘SEEK_SET’ : The move is made from the start of the file

If whence is ‘SEEK_CUR’ : The move is made from the current position

If whence is ‘SEEK_END’ : The move is made from the end of the file

Graphically

fseek (fptr , 1, whence)

Our Data File

SEEK_SET SEEK_CUR SEEK_END

Starting Position

When using

SEEK_END we

normally use

negative values !

Another useful command:
rewind (fptr)
It is the same as fseek(fptr, 0 , SEEK_SET)

C18\filemove.c

Another example

LC18\filemove.c

We will ask the user which value they wish to view

▪We move forward to this value

▪We display the value on the screen

How big is my file ?

Unlike text files we do not need to read to the end of the file to
determine the number of items contained within, rather:

• We ‘seek’ to the end of the file using the SEEK_END parameter

• We then get the current file position in bytes (size of the file)

long ftell (FILE *stream)

As we know the size of each element:

number of items = size of file / size of element

LC18\filesize.c

Structures: A ‘neat’ way to write headers

A better way however is, as with text files, to have a header at the start

We often make use of a structures as file headers

If we know all about the data to be written to a binary file we can

▪ Write out the header

▪ Write the data to the file

If, however we are writing data ‘on the fly’ to a binary file we can

▪ Write out a dummy header

▪ Write the data to the file

▪ Rewind back to the start of the file

▪ Write out an updated header with the correct information

▪ As the structure remains the same size (even if the contents changes) it is a
simple ‘overwrite’

Using a structure for a file header

We can still ‘randomly access’ the file (to pick specific items)

however we need to remember to add the offset caused by the

header

e.g.

If the structure is called ‘MyHeader’

All the data are integers

To get to the 5th item we need (i.e. skip 4)

Offset = sizeof (struct MyHeader) + 4*sizeof(int)

LC19\file_header_move.c

Developing Software for a Drawing Robot

Software Project

Overview

See Computer Engineering and Mechatronics Project v6.0.pdf in the

Software Project 2023/24 section on Moodle

Shape Strokes File – Appendix 1

Details of file format for

ShapeStrokeData.txt are

given in Appendix 1

General format:

NumShapes N

SHAPE_NAME S

X Y P

X Y P

X Y P

Where:

• NumShapes: Static text (always ‘NumShapes’)

• N: The number of shapes defined in the file

• SHAPE_NAME: The string identifier for the shape name

• X: The X position to move to (relative to 0,0)

• Y: The X position to move to (relative to 0,0)

• P: Pen up/down (0=up so no line is draw, 1=down so

causing a line to be drawn)

User input and playing the tic tac toe game

User input:

• Select shape to play with

• Input grid size (30 – 100mm)

• Take turns to select the grid

position for the move

G-Code – Appendix 2

Command Description

F1000 feed rate (i.e. pen speed) 1000 mm min−1

G0 X Y Move to the position X,Y

G1 X Y Draw a straight line from the last position to X,Y

M3 Turn on Spindle (needed for arm to work!)

S0 Pen up (original meaning is ‘spindle speed 0’)

S1000 Pen down (original meaning is ‘spindle speed 1000 rev min-1’)

You will need to generate G-codes for the text to be written by the robot

The codes will be generated using the shape data read from

ShapeStrokeData.txt for the shapes selected by the players at the positions

they have chosen for their move in the game. This needs to be scaled to

give the correct size.

Use the subset of G-codes shown here:

The G-Code Simulator can be used to check if G-codes have been generated

correctly

Serial Communication – Appendix 4

A virtual serial port is used to

send the G-Code commands

An RS-232 library written by

Teunis van Beelen is used.

This library has been incorporated

into an example program,

BlinkSerial. Download this from

Moodle and follow the instructions

to see how this works.

Sending G-code to Arduino and awaiting
acknowledgement – Appendix 4

The sample code in

RobotWriter5.0.zip on Moodle

gives a sample project for

sending some hard-coded G-

code

The Serial.c file uses a #ifdef

statement to either send the G-

code to the serial port or to be

printed (to enable testing using

the emulator)

Software Project

Start with the project in

RobotWriter5.0.zip

Replace the hard-coded G-

code commands with code

which reads the shapes file and

generates the G-codes to draw

the shapes using the robot

There is sample code which may help you in the Coding Samples and

Examples section on Moodle

There are a set of exercises for the week 6/7 computer lab which will help

you to think about how to load and store the shape file. This will be very

useful for the project planning.

 h e tro e t t t

 er t

 omm

Submissions: Design Document – 3pm Tuesday 21st
November

In line with the design processes covered in the course you will be required to

produce a specification document using the template on Moodle

(ProjectPlanningTemplate23-24.docx):

• A specification of precisely what the program needs to do

• The forms of the data stored within your program

• The planned function declarations (prototypes) for each function identifying

whether parameters are input, output or changed, and the return value if

any. You are encouraged to give a return value which indicates successful

execution or failure.

• Test cases for each function to confirm conformance of the function to its

specification.

You need also to provide a flowchart showing the operational flow of your

code.

Flowchart – predefined process or function

Function 1

Some

flowchart

blocks

Some more

flowchart

blocks

Function 1

Some

flowchart

blocks

Return

main()

Predefined

process or

function symbol

Part 1

Software Engineering
Best Practice

What is Software Engineering?

"The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software"— IEEE Standard
Glossary of Software Engineering Terminology

Covers the whole process required to produce a software product

What are the things you need to consider
to create a piece of software and/or a
software product?

What are the steps in the process?

These were your ideas at the start of the
module – any changes?

What is involved in creating software?

https://padlet.com/louisebrown7/overview-of-a-

software-project-ttiklf86efk760zq

https://padlet.com/louisebrown7/overview-of-a-software-project-ttiklf86efk760zq
https://padlet.com/louisebrown7/overview-of-a-software-project-ttiklf86efk760zq

Overview of a Software Project

Wh t’ volved re t g e e of oftw re?

Requirements gathering

High level design

Low level design

Development

Testing

Deployment

Maintenance

TexGen Geometric Textile Modelling Software

Fibre/Micro-Scale

Unit Cell/Meso-Scale

Component/Macro-Scale

Generate textile geometry
using TexGen GUI or script

Automatically generate 2D and 2D sheared textiles

3D wizard generates
idealised 3D textiles

Refinement of orthogonal weave
to simulate compaction

Generate mesh and input files for FEA or CFD to
 predict material properties

Micro-scale FEA simulations or analytical
methods determine yarn properties

Composite material properties extracted from meso-scale
predictions are used to model structural components

Requirements Gathering

Good design starts with being able to define your problem (in language your user
can understand)

If you can’t explain something to a six-year-old, you really don’t understand it
yourself – Albert Einstein

Specify the requirements – what features your software must provide

Must be precise, clear and unambiguous

Prioritise – wh t re the e e t l d wh h re ‘ e to h ve’

Verifiable – can it be tested that the requirement has been met?

Requirements Gathering

High Level Design

Gives an overall view of a system

Defines the major components of a system and their interactions. These can be
thought of as a set of building blocks each with its own set of responsibilities.
Communication rules between blocks should be well defined.

Specify major classes and data. Think about why a specific data format or file type
is to be used. Consider any libraries which can be used.

User interface design. This should not affect the classes and data already specified.

May use tools such as UML (Unified Modelling Language)

Modular -Core functionality is in the core
module, graphics are in a renderer module; if
 ot g v l t o , the re derer doe ’t
need to be built.

Platform independent – Can be run on
most operating systems supported by
the CMake build system.

Flexible – Can be used with the GUI, using
SWIG generated Python code or used as a
library of C++ functions

High Level Design

Low Level Design

Provides the detail about how the high level design will be implemented.

 o ’t d ve to the det l tr ght w y t rt to ref e the det l of wh t
functions will do, what classes or data structures are needed.

Define the interface – what is passed in and out of a function, what parameters
can be changed

This can be an iterative process. For example if several functions all pass the
same set of parameters it may be that these should be grouped together in a
structure so the data structure may need to be revisited.

TexGen Core Class Heirarchy

Levels of Design

1. Software
system

2. Division into
subsystems/packages

3. Division into classes within
packages

4. Division into
data and functions

within classes

5. Internal function
design

Robot Writing Project

1. Design Document:
In line with the design processes covered in the course you will be required to
produce a two page specification document which provides
• An explanation of precisely what the program needs to do
• The forms of the data stored within your program
• The planned function declarations (prototypes) for each function identifying

whether parameters are input, output or changed, and the return value if any.
You are encouraged to give a return value which indicates successful execution
or failure.

• Test cases for each function to confirm conformance of the function to its
specification.

• Flowchart(s) showing the operational flow of your code.

Advanced Data Types in C – Advanced Structures

Chapter 19

Advanced Structures

A C struct can have bit fields

▪ append a : and a number to an integer type

struct SmallNumbers
{
 unsigned int a:4;
 unsigned int b:4;
 unsigned int c:4;
 unsigned int d:4;
};

Bit Fields

struct SmallNumbers
{

unsigned int a:4;
 unsigned int b:4;
 unsigned int c:4;
 unsigned int d:4;
};

struct SmallNumbers has 4 members

• Each member has 4 bits

• The value each can take is defined

by the number of bits

• The structure is automatically made

the correct size

• Structure parts are independent of

each other

Another example of bitfields

struct Bits
{

unsigned char b0 : 1;
unsigned char b1 : 1;
unsigned char b2 : 1;
unsigned char b3 : 1;
unsigned char b4 : 1;
unsigned char b5 : 1;
unsigned char b6 : 1;

 unsigned char b7 : 1;
};

Assigning: struct Bits cByte = {0,1,1,0,1,1,1,1};

Or cByte.b0 = 0;
 cByte.b1 = 1;

We can also leave gaps

struct Bits
{

unsigned char t0 : 1;
unsigned char t1 : 1;
unsigned char f1 : 1;
unsigned char f2 : 1;
unsigned char : 2;
unsigned char b1 : 2;

};
struct Bits cByte = {0,1,1,0,3};

Note gap (padding)

We do ot l de g me t for the ‘g ’

What are they used for ?

Register settings, e.g.

▪Many devices use a single register to set a series of values

▪We could set/reset each bit but this would be very tedious

▪Better to set a structure and the we can control each bit without
affecting other bits

Eg. - a typical engineering case (1)

PBR1BR3 BR2 DB1DB2 SB1SB2

P: Parity (0=odd, 1 = even)

SB: Stop bits (0 bits,1 bit or 2 bits)

DB: Data bits (0=6 bits, 1=7 bits, 2 = 8 bit)

BR: Baudrate ([x+1] * 1200), x= 0..7

Serial port control register

Eg. - a typical engineering case (2)

PBR1BR3 BR2 DB1DB2 SB1SB2

P: Parity (0=odd, 1 = even)

DB: Data bits (0=6 bits, 1=7 bits, 2 = 8 bit)

SB: Stop bits (0=0 bits, 1=1 bit, 2=2 bits)

BR: Baudrate ([x+1] * 1200), x= 0..7

Serial port control register

To configure the port we would put zeros and ones in the relevant boxes and work out
the decimal (or hex) value and assign this to the register e.g. for 9600,8,1,E

111 1101 0 =243 (0xf3)
7=9600 2=8DB 1=1SB 1=E

Creating a structure to set register values

A bit field struct can help make this more manageable as we can separate items

struct RS232
{

unsigned char p : 1; // parity bit
unsigned char sb : 2; // stop bits
unsigned char db : 2; // data bits
unsigned char baud : 3; //baud rate

};

Assigning:

 struct RS232 serial = {1,1,2,7};

Or

 serial.p = 1;
 serial.sb = 1;
 serial.db = 2;
 serial.baud = 7;

Improving even further…

P: Parity #define parity_odd 0
 #define parity even 1

DB: Data bits #define data_bits_6 0
 #define data_bits_7 1
 #define data_bits_8 2

SB: Stop bits #define stop_bits_0 0
 #define stop_bits_1 1
 #define stop_bits_2 2

BR: Baudrate #define BAUD_1200 0
 #define BAUD_2400 1
 …..
 #define BAUD_9600 7

Note: For REALLY good code we can use #define to create constants for the various
parameters and use these in our code.

Th m e t very e y to re d d to d te, o der o r rev o e m le…

Which is much easier to read

Giving

 Assigning:

 struct RS232 serial = {parity_odd, stop_bits_1 , data_bits_2, BAUD_9600};

 Or

 serial.p = parity_odd;
 serial.sb = stop_bits_1;
 serial.db = data_bits_2;
 serial.baud = BAUD_9600;

Instead of

 Assigning:

 struct RS232 serial = {1,1,2,7};
 Or

 serial.p = 1;
 serial.sb = 1; etc.

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Arrays and pointers recap (1)
	Slide 3: Arrays and pointers recap (2)
	Slide 4: Arrays and pointers recap (3)
	Slide 5: Arrays and pointers recap (4)
	Slide 6: Arrays and pointers recap (5)
	Slide 7: Arrays and pointers recap (6)
	Slide 8: Introduction
	Slide 9: Chapter 18
	Slide 10: Files
	Slide 11: Files
	Slide 12: Text and Binary Files
	Slide 13: Streams
	Slide 14: Using Text Files
	Slide 15: Opening Files – fopen (1)
	Slide 16: Opening Files – fopen (2)
	Slide 17: Opening Files – fopen (3)
	Slide 18: Opening Files – fopen (4)
	Slide 19: fopen: Text File Examples
	Slide 20: Reading and Writing Data To and From Text Files
	Slide 21: Closing Files - fclose
	Slide 22: Text File Example
	Slide 23: Reading to the end of a file
	Slide 24: File read return values
	Slide 25: Text File Example - modified
	Slide 26: Using the feof macro
	Slide 27: Binary Files
	Slide 28: The Advantages
	Slide 29: More Advantages
	Slide 30
	Slide 31: Opening a Binary File
	Slide 32: Using the File
	Slide 33: fgetc, fputc
	Slide 34: The ‘new’ commands: fread
	Slide 35: The ‘new’ commands: fwrite
	Slide 36: Time for an example
	Slide 37: Random Access in Binary Files
	Slide 38: fseek
	Slide 39: Graphically
	Slide 40: Another example
	Slide 41: How big is my file ?
	Slide 42: Structures: A ‘neat’ way to write headers
	Slide 43: Using a structure for a file header
	Slide 44: Software Project
	Slide 45: Overview
	Slide 46: Shape Strokes File – Appendix 1
	Slide 47: User input and playing the tic tac toe game
	Slide 48: G-Code – Appendix 2
	Slide 49: Serial Communication – Appendix 4
	Slide 50: Sending G-code to Arduino and awaiting acknowledgement – Appendix 4
	Slide 51: Software Project
	Slide 52: Submissions: Design Document – 3pm Tuesday 21st November
	Slide 53: Flowchart – predefined process or function
	Slide 54: Software Engineering Best Practice
	Slide 55: What is Software Engineering?
	Slide 56: What is involved in creating software?
	Slide 57: Overview of a Software Project
	Slide 58: TexGen Geometric Textile Modelling Software
	Slide 59: Requirements Gathering
	Slide 60: Requirements Gathering
	Slide 61: High Level Design
	Slide 62: High Level Design
	Slide 63: Low Level Design
	Slide 64: TexGen Core Class Heirarchy
	Slide 65: Levels of Design
	Slide 66: Robot Writing Project
	Slide 67: Chapter 19
	Slide 68: Advanced Structures
	Slide 69: Bit Fields
	Slide 70: Another example of bitfields
	Slide 71: We can also leave gaps
	Slide 72: What are they used for ?
	Slide 73: Eg. - a typical engineering case (1)
	Slide 74: Eg. - a typical engineering case (2)
	Slide 75: Creating a structure to set register values
	Slide 76: Improving even further…
	Slide 77: Which is much easier to read

